《陶哲轩实分析》(中文第一版)——§11.4解答

习题11.4

11.4.1证明:(a)我们由习题11.3.1以及定理11.2.16容易证明\displaystyle \{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}\subseteq\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (f+g)}\},进而有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}\geqslant\overline{\int}_I (f+g). 同理我们易证\displaystyle \{p.c.\int_I h_3+p.c.\int_I h_4 : h_3\text{ is a p.c. function on I which minorizes f}, h_4\text{ is a p.c. function on I which minorizes g}\}\subseteq\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (f+g)}\},进而有\displaystyle\sup\{p.c.\int_I h_3+p.c.\int_I h_4 : h_3\text{ is a p.c. function on I which minorizes f}, h_4\text{ is a p.c. function on I which minorizes g}\}\leqslant\underline{\int}_I (f+g).

接下来我们将证明\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}=\sup\{p.c.\int_I h_3+p.c.\int_I h_4 : h_3\text{ is a p.c. function on I which minorizes f}, h_4\text{ is a p.c. function on I which minorizes g}\}=\int_I f+\int_I g.

对任何元素\displaystyle x\in\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\},有\displaystyle x\geqslant\overline{\int}_I f+\overline{\int}_I g=\int_I f+\int_I g. 进而有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}\geqslant\int_I f+\int_I g. 而对任意f的上方控制并且是逐段常值函数h_5,对任意g的上方控制并且是逐段常值函数h_6,我们有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}\leqslant p.c.\int_I h_5+p.c.\int_I h_6,即(由f、g是Riemann可积的我们知道两函数是有界函数,进而\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}是实数,故可以进行加减)\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}-p.c.\int_I h_5\leqslant p.c.\int_I h_6,对h_6取下确界我们就得到结论:对任意f的上方控制并且是逐段常值函数h_5我们有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}-p.c.\int_I h_5\leqslant\overline{\int}_I g=\int_I g,即对任意f的上方控制并且是逐段常值函数h_5我们有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}-\int_I g\leqslant p.c.\int_I h_5,我们再对h_5取下确界就有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}-\int_I g\leqslant\overline{\int}_I f=\int_I f. 即有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}\leqslant\int_I f+\int_I g. 综上我们有\displaystyle\inf\{p.c.\int_I h_1+p.c.\int_I h_2 : h_1\text{ is a p.c. function on I which majorizes f}, h_2\text{ is a p.c. function on I which majorizes g}\}=\int_I f+\int_I g.

同理我们可证\displaystyle\sup\{p.c.\int_I h_3+p.c.\int_I h_4 : h_3\text{ is a p.c. function on I which minorizes f}, h_4\text{ is a p.c. function on I which minorizes g}\}=\int_I f+\int_I g.

结合第一段的证明我们就有\displaystyle\int_I f+\int_I g\geqslant\overline{\int}_I (f+g)\displaystyle\int_I f+\int_I g\leqslant\underline{\int}_I (f+g). 由引理11.3.3我们知有\displaystyle\int_I f+\int_I g\leqslant\underline{\int}_I (f+g)\leqslant\overline{\int}_I (f+g)\leqslant\int_I f+\int_I g,进而有\displaystyle\underline{\int}_I (f+g)=\overline{\int}_I (f+g)=\int_I f+\int_I g,于是(f+g)是Riemann可积的并且\displaystyle\int_I(f+g)=\int_I f+\int_Ig.

(b)当c为0时容易验证等式是成立的. 现在考虑c\neq 0的情形.

我们先假设c>0. 我们考虑集合\displaystyle\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}. 对任意元素\displaystyle x\in\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\},有\displaystyle x\geqslant c(\overline{\int}_I f)=c(\int_I f). 进而有\displaystyle\inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\geqslant c(\int_I f). 而对任意集合\displaystyle\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}的下界L\in\mathbb{R},有对任意f的上方控制并且是逐段常值函数h_1,有\displaystyle c(p.c.\int_I h_1)\geqslant L,即\displaystyle p.c.\int_I h_1\geqslant \frac{L}{c}. 进而我们对h_1取下确界得到\displaystyle\overline{\int}_I f\geqslant\frac{L}{c},即\displaystyle c(\overline{\int}_I f)\geqslant L,即\displaystyle c(\int_I f)\geqslant L. 而当L为-\infty亦有\displaystyle c(\int_I f)\geqslant L. 进而有\displaystyle c(\int_I f)\geqslant\inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}. 综上,我们有\displaystyle \inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}=c(\int_I f). 同理我们可证有\displaystyle \sup\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}=c(\int_I f). 我们容易证明\displaystyle\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\subseteq\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (cf)}\}\displaystyle\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\subseteq\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (cf)}\}. 进而有\displaystyle\inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\geqslant\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (cf)}\}\displaystyle\sup\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\leqslant\sup\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (cf)}\}. 由上面一段即\displaystyle c(\int_I f)\geqslant\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (cf)}\}\displaystyle c(\int_I f)\leqslant\sup\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (cf)}\}. 进而有\displaystyle c(\int_I f)\leqslant \underline{\int}_I(cf)\leqslant \overline{\int}_I(cf)\leqslant c(\int_I f),进而\displaystyle \underline{\int}_I(cf)=\overline{\int}_I(cf)=c(\int_I f),于是此时有(cf)是Riemann可积的并且\displaystyle \int_I(cf)=c(\int_I f).

我们再来考虑c=-1的情形. 此时我们容易证明\displaystyle\{p.c.\int_I h : -h\text{ is a p.c. function on I which majorizes (f)}\}=\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (-f)}\}\displaystyle\{p.c.\int_I h' : -h'\text{ is a p.c. function on I which minorizes (f)}\}=\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (-f)}\}. 即\displaystyle\{p.c.\int_I -h : h\text{ is a p.c. function on I which majorizes (f)}\}=\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (-f)}\}\displaystyle\{p.c.\int_I -h' : h'\text{ is a p.c. function on I which minorizes (f)}\}=\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (-f)}\}. 于是我们有\displaystyle\sup\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (-f)}\}=\sup\{p.c.\int_I -h : h\text{ is a p.c. function on I which majorizes (f)}\}=-\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (f)}\}=-\overline{\int}_I f=-\int_I f\displaystyle\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (-f)}\}=\inf\{p.c.\int_I -h' : h'\text{ is a p.c. function on I which minorizes (f)}\}=-\sup\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (f)}\}=-\underline{\int}_I f=-\int_I f. 于是我们看到\displaystyle\sup\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (-f)}\}=\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (-f)}\}=-\int_I f. 于是当c=-1时我们有(cf)是Riemann可积的,并且\displaystyle\int_I(cf)=c(\int_I f).

我们再来考虑c<0的情形. 此时\displaystyle c(\int_I f)=((-1)\cdot(-c))\cdot(\int_I f)=(-1)\cdot((-c)\cdot(\int_I f))=(-1)\cdot(\int_I ((-c)\cdot f))=(\int_I ((-1)\cdot(-c)\cdot f))=\int_I(cf). 这就完成了证明.

下面这一段论述是正确的,但不能证明这一问. 所以不用看.

我们再来考虑c<0的情形.
此时我们容易证明\displaystyle\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\subseteq\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (cf)}\}\displaystyle\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\subseteq\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (cf)}\}.
进而我们有\displaystyle\inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\leqslant\sup\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\leqslant\sup\{p.c.\int_I h' : h'\text{ is a p.c. function on I which minorizes (cf)}\}\displaystyle\sup\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\geqslant\inf\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\geqslant\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes (cf)}\},即\displaystyle\inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\leqslant\sup\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\leqslant\underline{\int}_I (cf)\displaystyle\sup\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\geqslant\inf\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\geqslant\overline{\int}_I (cf).
进而我们有\displaystyle\inf\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\leqslant\sup\{c(p.c.\int_I h_1) : h_1\text{ is a p.c. function on I which majorizes f}\}\leqslant\underline{\int}_I (cf)\leqslant\overline{\int}_I (cf)\leqslant\inf\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}\leqslant\sup\{c(p.c.\int_I h_2) : h_2\text{ is a p.c. function on I which minorizes f}\}.

(c)由上面(a)与(b)的结论我们有\displaystyle\int_If-\int_Ig=\int_If+(-\int_Ig)=\int_If+\int_I(-g)=\int_I(f+(-g))=\int_I(f-g).

(d)我们知道\displaystyle\int_I f=\overline{\int}_I f=\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes f}\}. 而对一切元素\displaystyle x\in\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes f}\},由“对一切x\in If(x)\geqslant 0”以及定理11.2.16(d)我们知x\geqslant 0,故\displaystyle\int_I f\geqslant 0.

值得补充的是,如果条件“对一切x\in If(x)\geqslant 0”改为“对一切x\in If(x)>0”,我们有:如果I为空集或单点集那么有\displaystyle\int_I f=0;如果I为非退化区间那么\displaystyle\int_I f>0. 这个证明要用到套区间定理、或者使用函数黎曼可积的充要条件(结合习题11.4.2)、或者使用测度理论中的勒贝格积分,所以我们这里不做证明,以后有机会再补上.

(e)由“对一切x\in If(x)\geqslant g(x)”知对一切x\in I(f-g)(x)=f(x)-g(x)\geqslant 0,进而由上面(d)的证明知\displaystyle\int_I(f-g)\geqslant 0,由上面(c)的证明知有\displaystyle\int_I f-\int_I g\geqslant 0,即\displaystyle\int_I f\geqslant\int_I g.

由(d)中补充知如果条件“对一切x\in If(x)\geqslant g(x)”改为“对一切x\in If(x)>g(x)”,那么我们有——如果I为空集或单元素集那么\displaystyle\int_I f=\int_I g=0;如果I为非退化区间那么\displaystyle\int_I f>\int_I g.

(f)由引理11.3.7知\displaystyle\int_I f=p.c.\int_If=c|I|.

(g)对任意上方控制f并且逐段常值的函数h_1,我们定义函数H_1:J\rightarrow\mathbb{R},如果x\in IH_1(x):=h_1(x);如果x\notin IH_1(x):=0. 由定理11.2.16(g)知H_1在区间J上逐段常值并且\displaystyle p.c.\int_J H_1=p.c.\int_I h_1,而我们容易验证此时H_1是函数F的上方控制. 于是我们看到\displaystyle\{p.c.\int_I h_1 : h_1\text{ is a p.c. function on I which majorizes f}\}\subseteq\{p.c.\int_J H_1 : H_1\text{ is a p.c. function on J which majorizes F}\},进而有\displaystyle\overline{\int}_I f\geqslant\overline{\int}_J F.

同理我们可证\displaystyle\underline{\int}_I f\leqslant\underline{\int}_J F.

再结合引理11.3.3我们就有\displaystyle\overline{\int}_I f\geqslant\overline{\int}_J F\geqslant\underline{\int}_J F\geqslant\underline{\int}_I f. 由于f是Riemann可积的,即有\displaystyle\overline{\int}_I f=\underline{\int}_I f=\int_I f. 故我们有\displaystyle\overline{\int}_J F=\underline{\int}_J F=\int_I f.

综上,F在J上Riemann可积并且\displaystyle\int_J F=\int_I f.

(h)我们定义函数F_J:I\rightarrow\mathbb{R},如果x\in JF_J(x):=f(x);如果x\notin JF_J(x):=0. 定义函数F_K:I\rightarrow\mathbb{R},如果x\in KF_K(x):=f(x);如果x\notin KF_K(x):=0.

而对一切x\in Ix\in J, x\in K恰有一个成立,进而有f(x)=F_J(x)+F_K(x). 于是我们由上面(c)的结论知F_J, F_K只能为都黎曼可积或都不黎曼可积.

由于f是Riemann可积的,于是我们有\displaystyle\int_I f=\overline{\int}_I f=\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes f}\}=\inf\{p.c.\int_J h+p.c.\int_K h : h\text{ is a p.c. function on I which majorizes f}\}.

而对任意上方控制f并且逐段常值的函数h,当把函数h, F_J的定义域都限制到J上时,我们容易验证此时h|_JF_J|_J的上方控制. 于是我们有\displaystyle p.c.\int_J h|_J\in\{p.c.\int_J h_1 : h_1\text{ is a p.c. function on J which majorizes }F_J|_J\},即\displaystyle p.c.\int_J h\in\{p.c.\int_J h_1 : h_1\text{ is a p.c. function on J which majorizes }F_J|_J\}. 同理我们可证\displaystyle p.c.\int_K h\in\{p.c.\int_K h_2 : h_2\text{ is a p.c. function on K which majorizes }F_K|_K\}. 综上,对任意上方控制f并且逐段常值的函数h,我们有\displaystyle p.c.\int_J h\geqslant\inf\{p.c.\int_J h_1 : h_1\text{ is a p.c. function on J which majorizes }F_J|_J\}\displaystyle p.c.\int_K h\geqslant\inf\{p.c.\int_K h_2 : h_2\text{ is a p.c. function on K which majorizes }F_K|_K\}. 进而对一切上方控制f并且逐段常值的函数h,我们有\displaystyle p.c.\int_J h+p.c.\int_K h\geqslant\inf\{p.c.\int_J h_1 : h_1\text{ is a p.c. function on J which majorizes }F_J|_J\}+\inf\{p.c.\int_K h_2 : h_2\text{ is a p.c. function on K which majorizes }F_K|_K\}. 我们再对h取下确界,就有\displaystyle\int_I f=\overline{\int}_I f=\inf\{p.c.\int_I h : h\text{ is a p.c. function on I which majorizes f}\}=\inf\{p.c.\int_J h+p.c.\int_K h : h\text{ is a p.c. function on I which majorizes f}\}\geqslant\inf\{p.c.\int_J h_1 : h_1\text{ is a p.c. function on J which majorizes }F_J|_J\}+\inf\{p.c.\int_K h_2 : h_2\text{ is a p.c. function on K which majorizes }F_K|_K\}. 综上,我们证明了\displaystyle\overline{\int}_I f\geqslant\overline{\int}_J F_J|_J+\overline{\int}_K F_K|_K.

类似的论证我们可以证明\displaystyle\underline{\int}_I f\leqslant\underline{\int}_J F_J|_J+\underline{\int}_K F_K|_K.

而由于有\displaystyle\overline{\int}_J F_J|_J\geqslant\underline{\int}_J F_J|_J\displaystyle\overline{\int}_K F_K|_K\geqslant\underline{\int}_K F_K|_K. 进而有\displaystyle\overline{\int}_J F_J|_J+\overline{\int}_K F_K|_K\geqslant\underline{\int}_J F_J|_J+\underline{\int}_K F_K|_K,结合上面已证我们知道有\displaystyle\overline{\int}_I f\geqslant\overline{\int}_J F_J|_J+\overline{\int}_K F_K|_K\geqslant\underline{\int}_J F_J|_J+\underline{\int}_K F_K|_K\geqslant\underline{\int}_I f,进而可以得到\displaystyle\int_I f=\overline{\int}_J F_J|_J+\overline{\int}_K F_K|_K=\underline{\int}_J F_J|_J+\underline{\int}_K F_K|_K. 由于在区间J上函数f和函数F_J|_J给出相同的函数值并且在区间K上函数f和函数F_K|_K给出相同的函数值,于是上述结论可以改写成\displaystyle\int_I f=\overline{\int}_J f|_J+\overline{\int}_K f|_K=\underline{\int}_J f|_J+\underline{\int}_K f|_K,也即\displaystyle\int_I f=\overline{\int}_J f+\overline{\int}_K f=\underline{\int}_J f+\underline{\int}_K f.

我们假设F_J, F_K均不是Riemann可积的,由上面(g)的结论的逆否命题我们知道f|_J, f|_K均不是Riemann可积的,于是我们有\displaystyle\overline{\int}_J f|_J>\underline{\int}_J f|_J\displaystyle\overline{\int}_K f|_K>\underline{\int}_K f|_K. 进而有\displaystyle\overline{\int}_J f|_J+\overline{\int}_K f|_K>\underline{\int}_J f|_J+\underline{\int}_K f|_K. 这明显与我们证明的\displaystyle\int_I f=\overline{\int}_J f|_J+\overline{\int}_K f|_K=\underline{\int}_J f|_J+\underline{\int}_K f|_K相矛盾. 故假设不成立.

综上,只可能是F_J, F_K只能为都黎曼可积. 由此,由上面(g)的结论我们知有\displaystyle\int_I F_J=\int_J F_J|_J=\int_J f|_J=\int_J f以及\displaystyle\int_I F_K=\int_K F_K|_K=\int_J f|_K=\int_K f.

再由(a)证明的结论我们知\displaystyle \int_I f=\int_I(F_J+F_K)=\int_I F_J+\int_I F_K=\int_J F_J|_J+\int_K F_K|_K=\int_J f|_J+\int_K f|_K=\int_J f+\int_K f. 这就完成了证明.

 

11.4.2证明:我们假设存在x_0\in[a, b]使得f(x_0)\neq 0,由于f非负,则f(x_0)>0. 由于f在[a, b]上连续,进而也在x_0处连续,故对实数\frac{1}{2}f(x_0)>0,存在实数\delta>0,使得对一切x\in[a, b]有如果|x-x_0|<\delta|f(x)-f(x_0)|\leqslant\frac{1}{2}f(x_0)(也即0<\frac{1}{2}f(x_0)\leqslant f(x)\leqslant\frac{3}{2}f(x_0)). 于是我们找到了区间(x_0-\delta, x_0+\delta)\cap[a, b]使得对一切x\in(x_0-\delta, x_0+\delta)\cap[a, b]f(x)\geqslant\frac{1}{2}f(x_0)>0. 由于x_0\in(x_0-\delta, x_0+\delta)\cap[a, b],所以x_0\in(x_0-\delta, x_0+\delta)\cap[a, b]非空. 下面我们将证明x_0\in(x_0-\delta, x_0+\delta)\cap[a, b]不是单元素集.

我们容易知道(max(x_0-\delta, a), min(x_0+\delta, b))\subseteq(x_0-\delta, x_0+\delta)\cap[a, b]\subseteq[max(x_0-\delta, a), min(x_0+\delta, b)],而对于两区间(max(x_0-\delta, a), min(x_0+\delta, b)), [max(x_0-\delta, a), min(x_0+\delta, b)]的差别只在于后者至多比前者多包含端点max(x_0-\delta, a), min(x_0+\delta, b),于是我们得到如果[max(x_0-\delta, a), min(x_0+\delta, b)]非退化那么(max(x_0-\delta, a), min(x_0+\delta, b))也非退化. 现在我们假设(x_0-\delta, x_0+\delta)\cap[a, b]为单点集,由上面(max(x_0-\delta, a), min(x_0+\delta, b))\subseteq(x_0-\delta, x_0+\delta)\cap[a, b]\subseteq[max(x_0-\delta, a), min(x_0+\delta, b)]我们知道(max(x_0-\delta, a), min(x_0+\delta, b))为退化的,进而[max(x_0-\delta, a), min(x_0+\delta, b)]也为退化的. 但是我们有x_0\in(x_0-\delta, x_0+\delta)\cap[a, b]\subseteq[max(x_0-\delta, a), min(x_0+\delta, b)],所以此时[max(x_0-\delta, a), min(x_0+\delta, b)]退化为单点集,进而有max(x_0-\delta, a)=min(x_0+\delta, b),简单的分类讨论后知只可能为x_0-\delta>ax_0+\delta>b,或者为x_0-\delta<ax_0+\delta<b这两种情况. 对于前一种情形有(x_0-\delta, x_0+\delta)\cap[a, b]=(x_0-\delta, b];对于后一种情形有(x_0-\delta, x_0+\delta)\cap[a, b]=[a, x_0+\delta),但无论如何此时(x_0-\delta, x_0+\delta)\cap[a, b]均不为单点集. 综上我们证明了“如果(x_0-\delta, x_0+\delta)\cap[a, b]为单点集那么(x_0-\delta, x_0+\delta)\cap[a, b]不为单点集”,进而(x_0-\delta, x_0+\delta)\cap[a, b]不为单点集.

综上,我们知道(x_0-\delta, x_0+\delta)\cap[a, b]不为空集或单点集,于是(x_0-\delta, x_0+\delta)\cap[a, b]不是退化的区间,进而其长度|(x_0-\delta, x_0+\delta)\cap[a, b]|>0.

由于(x_0-\delta, x_0+\delta)\cap[a, b]\subseteq[a, b],我们定义函数h:[a, b]\rightarrow\mathbb{R},如果x\in(x_0-\delta, x_0+\delta)\cap[a, b]h(x):=\frac{1}{2}f(x_0);否则h(x):=0<f(x). 容易验证h为f的下方控制,并且仿照定理11.2.16(g)的证明知h在[a, b]上关于分法\mathbb{P}=\{(x_0-\delta, x_0+\delta)\cap[a, b], \{x\in[a, b] : x\notin(x_0-\delta, x_0+\delta)\cap[a, b]\text{ and }x\leqslant\inf((x_0-\delta, x_0+\delta)\cap[a, b])\}, \{x\in[a, b] : x\notin(x_0-\delta, x_0+\delta)\cap[a, b]\text{ and }x\geqslant\sup((x_0-\delta, x_0+\delta)\cap[a, b])\}\}逐段常值. 进而我们有\displaystyle\int_{[a, b]}f=\underline{\int}_{[a, b]}f\geqslant p.c.\int_{[a, b]}h=p.c.\int_{[\mathbb{P}]}h=0+\frac{1}{2}f(x_0)|(x_0-\delta, x_0+\delta)\cap[a, b]|+0=\frac{1}{2}f(x_0)|(x_0-\delta, x_0+\delta)\cap[a, b]|>0. 这个矛盾说明我们的假设不成立,故对于一切x\in[a, b]f(x)=0.

 

11.4.3证明:我们对\mathbb{P}的基数进行归纳. 当\#(\mathbb{P})=0时,此时I=\emptyset,由注11.3.8以及命题7.1.11知有\displaystyle\int_I f=0=\sum_{J\in\mathbb{P}}\int_J f. 当\#(\mathbb{P})=1时,此时\mathbb{P}=\{I\},进而\displaystyle\int_I f=\sum_{J\in\{I\}}\int_J f=\sum_{J\in\mathbb{P}}\int_J f. 当\#(\mathbb{P})=2时,\displaystyle\int_I f=\sum_{J\in\mathbb{P}}\int_J f由定理11.4.1(h)保证.

现在归纳假设对某自然数n\geqslant 2,对一切自然数k\leqslant n有:当\#(\mathbb{P})=k时有\displaystyle\int_I f=\sum_{J\in\mathbb{P}}\int_J f.

下面我们来证明对自然数n+1亦有:当\mathbb{P}=n+1时有\displaystyle\int_I f=\sum_{J\in\mathbb{P}}\int_J f.

由于\mathbb{P}=n+1\geqslant 2+1=3,于是I不可能是空集(因为空集的只有唯二的分法\emptyset\{\emptyset\}).

我们作一个假设:对一切P\in\mathbb{P}均有\sup(P)\neq\sup(I). 由于对一切P\in\mathbb{P}均有P\subseteq I,进而有\sup(P)\leqslant\sup(I). 进而对一切P\in\mathbb{P}均有\sup(P)<\sup(I). 我们取S:=max\{\sup(P) : P\in\mathbb{P}\}<\sup(I),再取x_0:=\frac{S+\sup(I)}{2}. 此时\inf(I)\leqslant min\{\inf(P) : P\in\mathbb{P}\}\leqslant max\{\inf(P) : P\in\mathbb{P}\}\leqslant max\{\sup(P) : P\in\mathbb{P}\}=S<x_0<\sup(I),即\inf(I)<x_0<\sup(I),由于I为区间,进而有x_0\in I. 再由x_0>S知对一切P\in\mathbb{P}x_0\notin P. 这与\mathbb{P}为I的一个分法相矛盾,故假设不成立,故存在P\in\mathbb{P}使得\sup(P)=\sup(I)(同理我们也可证存在一个P'\in\mathbb{P}使得\inf(P')=\inf(I)).

而对任意P\in\mathbb{P},如果\sup(P)=\sup(I),那么P为非空有界区间,进而P为单元素集或非退化区间. 当P为单元素集时,由\sup(P)=\sup(I)P=\{\sup(I)\};当P为非退化区间时,我们进一步假设存在非退化区间P''\in\mathbb{P}使得P''\neq P\sup(P'')=\sup(I). 由于P,P''\subseteq I均为非退化有界区间,进而存在实数a_1,a_2使得(a_1, \sup(I))\subseteq P\subseteq [a_1, \sup(I)](a_2, \sup(I))\subseteq P''\subseteq [a_2, \sup(I)]. 而我们发现此时有max(a_1, a_2)<\sup(I),进而有(max(a_1, a_2), \sup(I))\subseteq(a_1, \sup(I))(max(a_1, a_2), \sup(I))\subseteq(a_2, \sup(I)),进而有\emptyset\neq(max(a_1, a_2), \sup(I))\subseteq P,P'',进而P\cap P''\neq\emptyset. 这与“P,P''\in\mathbb{P}并且P\neq P''”相矛盾,故假设不成立,即对所有非退化区间P''\in\mathbb{P}P''=P\sup(P'')\neq\sup(I). 综上,对任意P\in\mathbb{P},如果\sup(P)=\sup(I),如果当P为非退化区间时,此退化区间也是唯一的.

综上,对任意P\in\mathbb{P},如果\sup(P)=\sup(I),那么P为唯一的单元素集\{\sup(I)\}或唯一右端点为sup(I)的非退化区间. 再结合已证的“存在P\in\mathbb{P}使得\sup(P)=\sup(I)”这个结论我们知道集合\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\}为上确界为sup(I)的非空区间. 我们不妨记K:=\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\},于是有\sup(K)=\sup(I).

我们考虑集合\mathbb{P}':=\{\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\}, \bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})\}. 我们在上面已证明K=\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\}是区间,进而我们容易验证\{P\in\mathbb{P} : \sup(P)=\sup(I)\}K=\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\}的分法. 下面将证明\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\}\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})的一个分法,并且\mathbb{P}'为I的分法.

我们先证明\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})是区间. 我们易证明\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})=(\bigcup\mathbb{P})\backslash(\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\})=I\backslash K=\{x\in I : x\notin K\text{ and }x\leqslant\sup(I)\},即\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})=\{x\in I : x\notin K\text{ and }x\leqslant\sup(I)\},再由I、K均为区间并且K\subseteq I并且通过定理11.2.16(g)证明过程知\{x\in I : x\notin K\text{ and }x\leqslant\sup(I)\}为区间,即I\backslash K=\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})为区间. 由此我们易验证\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\}\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})的一个分法. 同理我们容易验证\mathbb{P}'为I的分法.

综上,由定理11.4.1(h)和归纳假设我们知\displaystyle\int_I f=\sum_{J\in\mathbb{P}'}\int_J f=\int_{\bigcup\{P\in\mathbb{P} : \sup(P)=\sup(I)\}}f+\int_{\bigcup(\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\})}f=\sum_{J\in\{P\in\mathbb{P} : \sup(P)=\sup(I)\}}\int_J f+\sum_{J\in\mathbb{P}\backslash\{P\in\mathbb{P} : \sup(P)=\sup(I)\}}\int_J f=\sum_{J\in\mathbb{P}}\int_J f. 这就完成了证明.

 

11.4.4解释:对于定理11.4.3剩下的情形来说,是因为我们有min(f, g)=-max(-f, -g).

对于定理11.4.5剩下的情况来说,是因为我们有f_+g_-=f_+(g_+-|g|)=f_+g_+-f_+|g|,而|g|也为非负函数. 同理知f_-g_+以及f_-g_-的情形.

 

 

文内补充

1.定理11.4.3证明中“为什么?”.

第一个“为什么?”:由引理11.2.8知;第二个“为什么?”:由对一切x\in If(x)\geqslant\underline{f}(x), g(x)\geqslant\underline{g}(x)可推得.

 

2.定理11.4.5证明中“为什么?”.

第一个“为什么?”:显然;第二个“为什么?”:由定理11.4.1(e)可知\displaystyle\int_I max(\underline{f}_+(x), 0)\geqslant\int_I \underline{f}_+(x)可推得.

留下评论